8 research outputs found

    A Coloring Algorithm for Disambiguating Graph and Map Drawings

    Full text link
    Drawings of non-planar graphs always result in edge crossings. When there are many edges crossing at small angles, it is often difficult to follow these edges, because of the multiple visual paths resulted from the crossings that slow down eye movements. In this paper we propose an algorithm that disambiguates the edges with automatic selection of distinctive colors. Our proposed algorithm computes a near optimal color assignment of a dual collision graph, using a novel branch-and-bound procedure applied to a space decomposition of the color gamut. We give examples demonstrating the effectiveness of this approach in clarifying drawings of real world graphs and maps

    Planar and Poly-Arc Lombardi Drawings

    Full text link
    In Lombardi drawings of graphs, edges are represented as circular arcs, and the edges incident on vertices have perfect angular resolution. However, not every graph has a Lombardi drawing, and not every planar graph has a planar Lombardi drawing. We introduce k-Lombardi drawings, in which each edge may be drawn with k circular arcs, noting that every graph has a smooth 2-Lombardi drawing. We show that every planar graph has a smooth planar 3-Lombardi drawing and further investigate topics connecting planarity and Lombardi drawings.Comment: Expanded version of paper appearing in the 19th International Symposium on Graph Drawing (GD 2011). 16 pages, 8 figure

    Scalability considerations for multivariate graph visualization

    Get PDF
    Real-world, multivariate datasets are frequently too large to show in their entirety on a visual display. Still, there are many techniques we can employ to show useful partial views-sufficient to support incremental exploration of large graph datasets. In this chapter, we first explore the cognitive and architectural limitations which restrict the amount of visual bandwidth available to multivariate graph visualization approaches. These limitations afford several design approaches, which we systematically explore. Finally, we survey systems and studies that exhibit these design strategies to mitigate these perceptual and architectural limitations

    An Intuitive Way to Describe Our World: A Microblog LBS Visualization System

    No full text

    Circle-Representations of Simple 4-Regular Planar Graphs

    No full text
    Lovász conjectured that every connected 4-regular planar graph G admits a realization as a system of circles, i.e., it can be drawn on the plane utilizing a set of circles, such that the vertices of G correspond to the intersection and touching points of the circles and the edges of G are the arc segments among pairs of intersection and touching points of the circles. In this paper, (a) we affirmatively answer Lovász's conjecture, if G is 3-connected, and, (b) we demonstrate an infinite class of connected 4-regular planar graphs which are not 3-connected and do not admit a realization as a system of circles

    On the usability of Lombardi graph drawings

    No full text
    A recent line of work in graph drawing studies Lombardi drawings, i.e., drawings with circular-arc edges and perfect angular resolution at vertices. Little is known about the effects of curved edges versus straight edges in typical graph reading tasks. In this paper we present the first user evaluation that empirically measures the readability of three different layout algorithms (traditional spring embedder and two recent near-Lombardi force-based algorithms) for three different tasks (shortest path, common neighbor, vertex degree). The results indicate that, while users prefer the Lombardi drawings, the performance data do not present such a positive picture

    Planar Lombardi Drawings for Subcubic Graphs

    No full text
    We prove that every planar graph with maximum degree three has a planar drawing in which the edges are drawn as circular arcs that meet at equal angles around every vertex. Our construction is based on the Koebe-Thurston-Andreev circle packing theorem, and uses a novel type of Voronoi diagram for circle packings that is invariant under Moebius transformations, defined using three-dimensional hyperbolic geometry. We also use circle packing to construct planar Lombardi drawings of a special class of 4-regular planar graphs, the medial graphs of polyhedral graphs, and we show that not every 4-regular planar graph has a Lombardi drawing. We have implemented our algorithm for 3-connected planar cubic graphs.Comment: 15 pages, 9 figure

    LAY summaries for Cortex articles

    Get PDF
    Force-directed layout algorithms produce graph drawings by resolving a system of emulated physical forces. We present techniques for using social gravity as an additional force in force-directed layouts, together with a scaling technique, to produce drawings of trees and forests, as well as more complex social networks. Social gravity assigns mass to vertices in proportion to their network centrality, which allows vertices that are more graph-theoretically central to be visualized in physically central locations. Scaling varies the gravitational force throughout the simulation, and reduces crossings relative to unscaled gravity. In addition to providing this algorithmic framework, we apply our algorithms to social networks produced by Mark Lombardi, and we show how social gravity can be incorporated into force-directed Lombardi-style drawings.Comment: GD201
    corecore